
University of Liège
Faculty of Applied Sciences

Introduction to Python
Exercises

Academic year 2023-2024



Introduction to Python - Exercises 2

Guidelines

You are asked to solve as much of the following Python problems. They are designed
to be accessible for beginners, but show a sufficient level of difficulty so that they require
a little bit of thinking before coding. The degree of difficulty of each exercise is given by
the following icons: (∗) fairly straightforward, (∗∗) a little bit more difficult, (∗∗∗) longer
and requires a larger amount of Python concepts.
You are expected to solve all the eight exercises labelled by ♠ during your Python
training. The remaining exercises are supplementary exercises that you can realize by
yourself to understand Python even better.

Note that most of the exercises are put in an engineering context, so that you may be
encounter similar problems during classical courses.

Contents
1. Bending moment diagram (∗) (♠) 3

2. Eigenvalues and eigenvectors of a mechanical system (∗) (♠) 4

3. Dynamic balancing (∗) 5

4. Hermite polynomials (∗) (♠) 6

5. 2018 Evaluation test (∗) 7

6. Bending resistance of a wood beam (∗) 8

7. Free response of a spring-mass-damper system (∗∗) (♠) 9

8. Linear regression (∗∗) 10

9. Numerical simulation of a spring-mass system (∗∗) (♠) 11

10.Lagrange interpolation (∗∗) 12

11.Wall temperature (∗∗) (♠) 13

12.Clamped bar subjected to point load (∗∗) (♠) 14

13.Number of divisors (∗∗) 15

14.Prime factorization (∗∗) 16

15.European buckling curves (∗∗∗) 17

16.Blancmange curve (∗∗∗) (♠) 18

17.Estimation of π using the rand function (∗∗∗) 19

18.Randomly moving balls (∗∗∗) 20



Introduction to Python - Exercises 3

1. Bending moment diagram (∗) (♠)
Bending moment diagram is an analytical tool used in conjunction with structural analysis
to help to perform structural design by determining the value of bending moment at
a given point of a structural element such as a beam. Consider the following beam
(P = 400 kN, q = 25 kN/m, and distances in m):

By using the rotation method, a method used in indeterminate structures analysis, we
find the following bending moments at each point:

M1

M2

M3

M4

 =


−69.14
−238.27
−218.52

0

 kNm.

Bending moments at each point between nodes can be evaluated by the following simpli-
fied formula:

M(x) = µ(x) +Mleft ·
Lspan − x

Lspan
+Mright ·

x

Lspan
(1)

with, for a simply supported beam,

µ(x) =


P · x
4

, for a point loading P at midspan and x smaller than L/2 ,

P · (L− x)

4
, for a point loading P at midspan and x bigger than L/2,

q · L · x
2

− q · x2

2
, for an uniform load q.

(2)
Questions:

(i) Write a script that calculates bending moment at each point (discretize each span
as you want).

(ii) Plot the bending moment diagram. The figure should contain a title and axes
should be labeled properly.



Introduction to Python - Exercises 4

2. Eigenvalues and eigenvectors of a mechanical system
(∗) (♠)

For an undamped mechanical system, the equations of motion take the following form:

Mq̈ + Kq = f, (3)

where M is the mass matrix, K is the stiffness matrix, f is the vector of external loads,
and q is the vector containing the degrees of freedom of the system.

The n eigenvalues of the system are then defined as the solutions ωi of

det(K− ω2
i M) = 0, i = 1, ..., n (4)

and the associated eigenvectors are given by the solutions xi of

(K− ω2
i M)xi = 0, i = 1, ..., n. (5)

You are given the features of the system portrayed in Fig.1:

q(t) =
{
q1(t)
q2(t)

}
, M =

[
3m 0
0 m

]
, K =

[
2k −k
−k k

]
, f =

{
0
F0

}
, (6)

where m = 1 kg, k = 5N/m and F0 = 10N.

k k
3m m

F0

q1(t) q2(t)

Figure 1: Schematic of the mechanical problem.

Questions:

(i) Determine, using Python, the eigenvalues of the system.

(ii) Determine, using Python, the eigenvectors of the system.

Hint: Use the scipy.linalg module



Introduction to Python - Exercises 5

3. Dynamic balancing (∗)
Consider a rotating shaft (Fig. 2). If its center of mass does not go through the rotation
axis, or if its inertia tensor is not diagonal in the reference frame associated to the rotation,
there will be additional stress applied on the structure and its bearing, which is to be
avoided.

plane I plane II
measurement VI measurement VII

Ω

Figure 2: Schematic of the two-plane balancing method.

Therefore, there exist methods to detect where the unbalance comes from. One of them,
called the two-plane balancing method consist in putting trial weights and measure their
influence on the induced vibration, to come back to the initial unbalance.

We place ourselves in the rotating frame. The induced vibration is then represented as
a vector, and the additional masses (initial unbalance and added weights) are also repre-
sented by vectors, their norm being the value of the mass, whereas their phase indicates
their position. Instead of using vectors, we use the complex numbers formalism, so that
the calculations become very straightforward.

Given the initial vibration measurement V0,I = 1.7ei
174
180

π mm/s, V0,II = 0.47ei
264
180

π mm/s,
an added weight MI = 3.2 g resulting in vibration measurement V1,I = 1.41ei

119
180

π mm/s,
V1,II = 0.32ei

253
180

π mm/s and an added weight MII = 3.2 g resulting in vibration measure-
ment V2,I = 1.62ei

168
180

π mm/s, V2,II = 0.94ei
29
180

π mm/s, the initial unbalance in the planes
I and II are given by {

BI

BII

}
=

[
a1,I a1,II
a2,I a2,II

]−1{V0,I

V0,II

}
, (7)

where

a1,I =
V1,I − V0,I

MI

, a1,II =
V2,I − V0,I

MII

, (8)

a2,I =
V1,II − V0,II

MI

, a2,II =
V2,II − V0,II

MII

. (9)

Questions:

(i) Compute the coefficients ai,J for i ∈ {1, 2} and J ∈ {I, II}.

(ii) Determine the initial unbalance in planes I and II, i.e. BI and BII .



Introduction to Python - Exercises 6

4. Hermite polynomials (∗) (♠)
Hermite polynomials are defined as

Hn(x) =

⌊n/2⌋∑
k=0

(−1)k n!

2kk!(n− 2k)!
xn−2k, n ∈ N, (10)

where ⌊x⌋ is the floor function, i.e. the largest integer smaller or equal to x. It can be
computed via the floor function in the numpy library. The factorial function is already
implemented in the math module as factorial.

Questions:

(i) Write a function hermite(n, x) that computes the value of Hn(x).

(ii) Plot the four first hermite polynomials, that is Hn(x) with n ∈ {0, 1, 2, 3}, for
x ∈ [−2, 2]. The axes should be labeled properly, and a legend should be displayed.



Introduction to Python - Exercises 7

5. 2018 Evaluation test (∗)

Exercise 1: Factorial N ! of a number N

(i) Write scripts which enable to calculate N ! by using a while loop first and then
with a for loop.

(ii) Thanks to the profiler, compare time taken by the two scripts and the factorial
command from the math module.

Exercise 2: Fibonacci sequence

(i) Write a function that returns the n-th term of the Fibonacci sequence. An extract
of this sequence is the following:

0, 1, 1, 2, 3, 5, 8, 13, 21, ...

so that it can defined by x1 = 0, x2 = 1 and xn = xn−1 + xn−2, n > 2.

(ii) Write a second function that returns all of the n first terms of this sequence as a
vector.

Exercise 3: Plots

Plot on a same figure the sine, cosine and tangent functions. Choose the intervals of axis
as you want but axes should be labeled properly, and a legend should be displayed.



Introduction to Python - Exercises 8

6. Bending resistance of a wood beam (∗)
Consider a simply supported beam made of wood. The bending resistance of the beam
is given by the following equations

km
σy

fm,d

+
σz

fm,d

≤ 1,

σy

fm,d

+ km
σz

fm,d

≤ 1,
(11)

where σy is the stress due to the bending moment along the y axis, σz is the stress due
to the bending moment along the z axis and km = 0.7, fm,d = 0.9 · 18/1.3MPa are coef-
ficients defined by Eurocode 5.

The dimensions of the cross-section of the beam are b = 80mm and h = 80mm. The
length of the beam is L = 2m. It is subjected to a point load P = 1000N along the y
axis and a point load Q = 750N along the z axis at the middle of the beam (Fig. 3).

ex

ey

ez A B

P

Figure 3: Simply supported beam subjected to a vertical point load at midspan.

Questions:

(i) Write a Python function that takes as arguments the length of the beam L and
the loads P and Q to check the resistance of the beam.

(ii) Adapt your script to display a message "Resistance ok" if the beam resists or
"Resistance not ok" if it is not the case.

(iii) Now consider L = 3m, P = 1250N and Q = 500N. What happens ?



Introduction to Python - Exercises 9

7. Free response of a spring-mass-damper system (∗∗)
(♠)

Consider a spring-mass-damper system. If there is no other force acting on the system,
Newton’s law writes

mẍ+ cẋ+ kx = 0 (12)

where m, c and k are the equivalent mass, damping and spring of the system. Defining
the resonant frequency ω0 =

√
k/m and the damping ratio ζ = c/(2

√
km), it reduces to

the canonical form
ẍ+ 2ζω0ẋ+ ω2

0x = 0 (13)

For the initial conditions (x(0), ẋ(0)) = (x0, ẋ0), the solution is then given by:

• if 0 < ζ < 1,

x(t) = e−ζω0 t

[
x0 cos(ω0

√
1− ζ2 t) +

ẋ0 + ζω0x0

ω0

√
1− ζ2

sin(ω0

√
1− ζ2 t)

]
. (14)

• if ζ = 1,
x(t) = e−ζω0 t [x0 + (ẋ0 + ζω0x0)t] . (15)

• if ζ > 1,

x(t) = e−ζω0 t

[
ẋ0 + (ζ +

√
ζ2 − 1)ω0x0

2ω0

√
ζ2 − 1

eω0

√
ζ2−1 t

+
−ẋ0 + (−ζ +

√
ζ2 − 1)ω0x0

2ω0

√
ζ2 − 1

e−ω0

√
ζ2−1 t

]
.

(16)

Questions:

(i) Write a function that takes as arguments the parameters m, c and k and returns
the resonant frequency ω0 as well as the damping ratio ζ.

(ii) Write a function that takes as arguments the parameters m, c and k, as well as the
initial conditions (x0, ẋ0) and a time T , and plots x(t) for t ∈ [0, T ].

(iii) Add an option to the previous function to specify the color of the plot.

(iv) Plot x(t) if m = 3 kg, k = 12N/m, x0 = 2m, ẋ0 = 1m/s, for t ∈ [0, 10] s, and for
c ∈ {1, 12, 15}Ns/m. All the plots should be on the same figure. The axes should
be labeled properly.



Introduction to Python - Exercises 10

8. Linear regression (∗∗)
The linear regression problem consists, giving a series of points (x1, y1), ..., (xn, yn), in
finding the appropriate coefficients (α, β) of the linear equation y(x) = αx + β, so that
the following relation holds:

yi ≃ y(xi) = αxi + β. (17)

The least square method tries to find (α, β) by minimizing
∑n

i=1 |y(xi)− yi|2 with respect
to α and β; and one can show that by doing so, we would get the following equations:[∑n

i=1 x
2
i

∑n
i=1 xi∑n

i=1 xi n

]{
α
β

}
=

[∑n
i=1 xiyi∑n
i=1 yi

]
. (18)

Questions:

(i) Write a function that takes as arguments the two vectors of data [x1, ..., xn], [y1, ..., yn],
and returns the coefficients α and β, using (18).

(ii) After doing an experiment, the following data is obtained:

ε× 104 [-] 0.0535 0.1001 0.1462 0.1950 0.2400 0.2977 0.3408 0.3868
σ [MPa] 1.4701 1.8769 3.1496 3.9615 5.1777 5.8470 6.7195 7.7155

Write a script to plot these points. In the same figure, plot a linear regression, using
the previously defined function. The axes should be labeled properly.



Introduction to Python - Exercises 11

9. Numerical simulation of a spring-mass system (∗∗)
(♠)

One way to simulate the dynamics of a mechanical system is to discretize Newton’s
equation, according to the following scheme (here in 1D):{

v̇(t) = 1
m
F (x(t), ẋ(t), t)

ẋ(t) = v(t)
⇒

{
v(t+∆t)← v(t) + ∆t

m
F (x(t), v(t), t)

x(t+∆t)← x(t) + v(t+∆t)∆t
(19)

Questions:

(i) Implement this numerical scheme, for a spring force F (x(t)) = −kx(t), as a function
that computes (x(t), v(t)) for t = 0, ..., (N−1)∆t, given k, m, ∆t, N and the initial
conditions (x(0), v(0)).

(ii) Using the previously defined function, simulate the position for t ∈ [0, 10] s, if
k = 5N/m, m = 1 kg and (x(0), v(0)) = (5m, 0m/s), using a time step ∆t = 0.01 s.
The axes should be labeled properly.

(iii) Display the trajectory obtained in the phase space, i.e. a plot where the coordinates
are (x(t), v(t)), t ∈ [0, 10] s. The axes should be labeled properly.



Introduction to Python - Exercises 12

10. Lagrange interpolation (∗∗)
Lagrange interpolation is a method that allows to build a polynomial of degree (n − 1)
that goes through a series of points (x1, y1), ..., (xn, yn). The resulting polynomial is given
by

L(x) =
n∑

i=1

yi
∏
j ̸=i

x− xj

xi − xj

, (20)

so that L(xi) = yi, i ∈ {1, ..., n}. For instance, if (x1, y1) = (1, 1), (x2, y2) = (2, 3) and
(x3, y3) = (3, 1), then

L(x) = y1
x− x2

x1 − x2

x− x3

x1 − x3

+ y2
x− x1

x2 − x1

x− x3

x2 − x3

+ y3
x− x1

x3 − x1

x− x2

x3 − x2

(21)

= 1
x− 2

1− 2

x− 3

1− 3
+ 3

x− 1

2− 1

x− 3

2− 3
+ 1

x− 1

3− 1

x− 2

3− 2
(22)

= −2x2 + 8x− 5. (23)

Questions:

(i) Write a function lagrange(coord_x, coord_y, x) that computes the value of
L(x), given that coord_x = [x1, ..., xn] and coord_y = [y1, ..., yn].

(ii) Plot L(x) for the points (x1, y1) = (−2, 1), (x2, y2) = (−1, 4), (x3, y3) = (1, 0),
(x4, y4) = (2, 2) for x ∈ [−3, 3]. The axes should be labeled properly.



Introduction to Python - Exercises 13

11. Wall temperature (∗∗) (♠)
We consider the simplified heat transfer problem portrayed in Fig.4: given a room temper-
ature Ti, we seek to find the external room temperature Tw, if the external surroundings
(mainly the sky) is at a given temperature Tsur.

L

Ti Tw
qcond

kw, ε

Tsur
qrad

Ti ∈ {280, 290, 300}K
Tsur = 273.15K
kw = 0.75W/(m·K)
ε = 0.92
L = 0.06m

Figure 4: Schematic of the heat-transfer problem.

Under suitable assumptions1, one gets the following non-linear equation:

kw
L
(Ti − Tw) = hr(Tsur, Tw)(Tw − Tsur), (24)

where hr(Tw, Tsur) = σε(Tw + Tsur)(T
2
w + T 2

sur) with Stefan-Boltzmann constant σ =
5.67× 10−8 W/(m2·K4).

Because this equation is non-linear, we suggest the following numerical scheme, where
T

(i)
w is the estimation of Tw at the i-th step:

• guess a value T
(0)
w ;

• do

compute h
(i)
r = σε(T

(i)
w + Tsur)

(
T

(i)
w

2
+ T 2

sur

)
;

compute T
(i+1)
w =

h
(i)
r LTsur + kwTi

h
(i)
r L+ kw

;

while |T (i+1)
w − T

(i)
w | > tol = 10−4.

Questions:

(i) Implement the suggested numerical scheme as a function T_w=Temp_Wall(T_w_guess,
T_i) that returns the iterative steps: T_w=[T_w(1), T_w(2), ...], given a guess
T_w_guess and T_i.

(ii) Plot the different values of T (i)
w if Ti ∈ {280, 290, 300}K, on a same graph. You can

take 300K as a first guess. The axes should be labeled properly.

1Here are the assumptions: steady-state, one dimensional conduction through the wall, constant
thermal conductivity and emissivity, negligible convection, negligible solar radiation, the surroundings
are large with respect to the wall, and the wall is a diffuse and grey surface.



Introduction to Python - Exercises 14

12. Clamped bar subjected to point load (∗∗) (♠)
Consider a vertical clamped bar which is subjected to a point load P at its free end
(Fig.5):

P

•

•

u1

u2

element I

(a) Single finite element model.

P

•

•

•

u1

u2

u3

element I

element II

(b) Two finite elements model.

Figure 5: Schematic of a clamped bar subjected to point load.

First, the bar is considered as single finite element. This element is a bar with a stiffness
matrix

Kel =
EA

L

[
1 −1
−1 1

]
= k

[
1 −1
−1 1

]
. (25)

To determine the support reaction, the following system of equations must be solved

Kelqel = Fel ⇔ k

[
1 −1
−1 1

] [
u1

u2

]
=

[
R
P

]
, (26)

where R is the support reaction. Given the support conditions, the nodal displacement
u1 is 0 and you can strike out the first line and the first column of the stiffness matrix.
Then, you can solve the system to get the unknown displacement and finally retrieve the
support reaction.

If you consider a bar divided in 2 finite elements, each element has 2 nodes and is charac-
terized by the previously defined Kel matrix. However, since the structure has 3 nodes,
the structural stiffness matrix K will be a 3 × 3 matrix. We need to add the stiffness
matrices from each element which is called assembly. After the assembly procedure, the
system to solve is

Kq = F ⇔

 kI −kI 0
−kI kI + kII −kII
0 −kII kII

u1

u2

u3

 =

R0
P

 (27)

and the principle to solve the system is the same as before.

Questions:

(i) Find the reaction R using the described procedure for a bar with only 1 element.
Use E = 210 000MPa, A = 40× 40mm2, L = 3m and P = 10 kN. Do not take self
weight into account.

(ii) Do the same for a bar divided in 2 finite elements.

(iii) Do the same for a bar divided in 100 finite elements.



Introduction to Python - Exercises 15

13. Number of divisors (∗∗)
We consider a natural number n ∈ N0. The main goal is to determine the number of
divisors d(n) of n.

Questions:

(i) Write a function that computes d(n) naively, i.e. by going through all the numbers
{1, ..., n} and by checking whether or not they divide n.

(ii) The previous algorithm can be significantly improved by making the following re-
marks:

• 1 and n are always divisors of n;

• If p divides n, then n/p also divides n.

Improve your function given these considerations.

(iii) Compare the execution time of the two previous methods by testing them on n =
108, using the profiler or the time module.

(iv) Write a function that checks whether or not a number is prime, i.e. a natural
number strictly greater than one that is only divisible by one and himself.

(v) Write a function that checks whether or not a number n is perfect, i.e. whether or
not n can be written as the sum of its divisors (where n itself is not counted as a
divisor). For instance, 28 is a perfect number since 28 = 1 + 2 + 4 + 7 + 14.
Hint: slightly modify the function implemented in (ii).



Introduction to Python - Exercises 16

14. Prime factorization (∗∗)
Given a number n ∈ N\{0, 1}, one may want to know its prime factorization, i.e. the set
of prime numbers {p1, p2, ..., pk} such that n can be written as

n =
k∏

i=1

pαi
i , (28)

where αi is the multiplicity degree of the prime number pi in the decomposition of n. For
instance, 150 can be written as 2× 3× 52, and the multiplicity degree of 5 is 2.

Questions:

(i) Write a function prime_factors(n) that returns the prime factorization of n as a
vector containing its prime factors. If the multiplicity degree of a prime is greater
than one, then the prime number should appear as many times as the multiplicity
degree. For instance, prime_factors(150) should return [2, 3, 5, 5].

(ii) Write a function decomposition(n) that returns [p, alpha], where p is the set of
prime numbers present in the decomposition of n, but they should only be counted
once. alpha is the vector containing the multiplicity degree associated to each
prime in p. For instance, decomposition(150) should return [p, alpha] with
p=[2, 3, 5] and alpha=[1, 1, 2]. You can use the prime_factors function.



Introduction to Python - Exercises 17

15. European buckling curves (∗∗∗)
Buckling instabilities are very important for the resistance validation of a metallic ele-
ment in the construction field. They are introduced in the resistance modelling through
a reduction factor χ that allows to take into account parameters, mainly the element
elongation. Moreover, different buckling curves are defined for each section class.

The reduction factor will be calculated using the following formulas:

Euler’s critical load: Reduced slenderness: Reduction factor:

Ncr =
π2EI

L2
cr

λ =

√
Afy
Ncr

χ =
1

ϕ+

√
ϕ2 − λ

2
≤ 1

where E is Young’s modulus, I the inertia modulus, Lcr the critical length, A the cross-
section area, fy the elastic limit, and ϕ = 0.5 [1+α(λ−0.2)+λ

2
], where α is the buckling

imperfection factor defined by Eurocode 3.

Curve a0 a b c d
α 0.13 0.21 0.34 0.49 0.76

Questions:

(i) Draw the curve a0 first by using a loop and then without using any.

(ii) Create a loop that allows to draw the curves a, b, c and d on a same plot.

(iii) Complete the figure by adding a legend, axes, colors and increasing the curves
width.

(iv) Plot each different curve in a separate figure, and include a title that changes in
function of the portrayed curve.

(v) Include a request that asks to choose which curve we want to plot.

Consider a steel beam S235 (fy = 235MPa, E = 210 000MPa) of length L = 8m,
simply supported (buckling coefficient K = 1) and with a rectangular cross section of
area A = 12000mm2.

(vi) Write a new function that takes as arguments L, E, I, K, A, α and fy and returns
the axial resistance of this beam.



Introduction to Python - Exercises 18

16. Blancmange curve (∗∗∗) (♠)
The Blancmange function, also called the Takagi fractal curve, is a pathological contin-
uous function. The name blancmange comes from its resemblance to a pudding of the
same name (Fig.6).

Figure 6: Blancmange curve. Figure 7: Mount Tagaki surface.

Cartesian equation of this curve is the following:

B(x) =
n∑

k=0

d(2k · x)
2k

, (29)

where d(x) is the distance from x to the nearest integer.

Questions:

(i) Write a function blancmange(x,n) that takes as arguments the vector x and the
sum boundary limit n and returns a vector which contains each point of this par-
ticular curve.

(ii) Add a condition in this function to take into account the circular version of this
curve. The equation of the circular version of this curve is the following:

B(x) =
n∑

k=0

f(2k · x)
2k

where f(x) = 2 · d(x)(̇1− d(x)). (30)

Include a request that asks to user which shape he wants.

(iii) Write a script to plot four blancmange curves with n=[1 2 3 5 10] in a same
figure.

(iv) Write a script to plot a 3D diagram. The translational surface generated by the
translation of a blancmanger curve along another, following z = B(x)+B(y), is an
elegant mountain called "Mount Tagaki" (Fig.7).



Introduction to Python - Exercises 19

17. Estimation of π using the rand function (∗∗∗)
An original way to calculate π is to use probability theory. Indeed, consider a square of
size 2× 2, and randomly generate N points distributed uniformly in it. If we denote by
Nc the number of points lying within the circle centered at the center of the square, and
of unitary radius, we should get that Nc is close to Nπ/4; more formally, we have that2

lim
N→+∞

Nc

N
=

π

4
. (31)

Questions:

(i) Write a function that generates N points uniformly in [−1, 1] × [−1, 1] (i.e. there
are two components for each point). Note that the random.rand(N) from numpy
can generate a vector of N independent and uniformly distributed variables in [0, 1].

(ii) Write a function that computes, given the points coordinates [x1, ..., xn] and [y1, ..., yn],
the number of points lying within the circle centered at (0, 0) with unitary radius.
Try to find a solution without using a loop. We recall that our disk is characterized
by D = {(x, y) ∈ R2 : x2 + y2 ≤ 1}.

(iii) Plot the realization of the experiment, that is the value of 4Nc/N , as a function of
N , where N ∈ {10, 102, 103, 104, 105, 106, 107}. The axes should be labeled properly.

(iv) Instead of increasing N , we can also simulate a large number of realizations, N
being fixed, and calculate the mean of the results. Write a script that determine
the mean and the variance of 1000 realizations of the previous experiment, for
N ∈ {10, 102, 103, 104}.

2N.B.: In fact, this limit should be taken as an almost sure convergence.



Introduction to Python - Exercises 20

18. Randomly moving balls (∗∗∗)
Consider a situation where a large number of balls are coming from the center of a square.
Those balls move in the (x, y) plane as time goes by, and their displacement is random.

When a ball reaches one of the square sides, it disappears (see Fig.8).

t = 0 s

x

y

• 7→

t = T > 0 s

x

y

•

•

••

•
•

•

•

•

•

•

•

•

•

•

•

•

•

Figure 8: Illustration of the process.

Questions:

(i) Write a code that renders the previously described phenomenon.

(ii) Draw in a figure the square that displays at each iteration the balls that are moving.

(iii) Add a condition that allows to make the balls disappear whenever they reach the
limits of the square.

(iv) Add a condition that make the balls change their color when they have reached half
the square.

To achieve those you questions, you may need to use the following functions: random.randn,
clf and pause from numpy and matplotlib.pyplot.


	Bending moment diagram (*) ()
	Eigenvalues and eigenvectors of a mechanical system (*) ()
	Dynamic balancing (*)
	Hermite polynomials (*) ()
	2018 Evaluation test (*)
	Bending resistance of a wood beam (*)
	Free response of a spring-mass-damper system (**) ()
	Linear regression (**)
	Numerical simulation of a spring-mass system (**) ()
	Lagrange interpolation (**)
	Wall temperature (**) ()
	Clamped bar subjected to point load (**) ()
	Number of divisors (**)
	Prime factorization (**)
	European buckling curves (***)
	Blancmange curve (***) ()
	Estimation of  using the rand function (***)
	Randomly moving balls (***)

