
Python Tutorial

August 22, 2023

Contents

1 Installing Anaconda, Python, and the Spyder IDE 2
1.1 IDE Spyder . 2

2 Variable Types 5
3 Help 7
4 Terminology 8

4.1 Scripts . 8
4.2 Functions . 8
4.3 Modules . 9
4.4 Packages . 10
4.5 Libraries . 10
4.6 Classes . 10

5 Script Editing 11
5.1 Indentation . 13

6 Libraries, functions, local and global variables 14
6.1 List of Useful Libraries . 18

7 Other types of objects: list, tuple, and array 19
7.1 List and tuple . 19
7.2 1-dimensional Arrays . 20

7.2.1 Operations on a 1-dimensional array . 22
7.3 2-Dimensional Arrays . 23

8 Solving Systems of Linear Equations 25
9 Control Structures: for, if/elif/else,while, break 26

9.1 The for Loop . 26
9.2 if/elif/else . 28
9.3 The while Loop / break / continue . 28

10 Polynomials 30
11 Graphics or Plots 31

11.1 Basics . 31
11.2 Display multiple curves in one graph, create a new figure 32

12 Interpolation using splines 34
13 Inputs and Outputs 36
14 Solving differential equations 37
15 Debugging 41
16 Performance Analysis 44
17 End of the tutorial 47

1

1 Installing Anaconda, Python, and the Spyder IDE

Python is a high-level, object-oriented open-source programming language widely used in the in-
dustrial and scientific world. This language not only allows for scientific computing and graphical
visualization but also the creation of websites. To take advantage of it, we will use the Anaconda
distribution platform which enables the installation of Python and the Spyder programming envi-
ronment. To get started, download and install the Anaconda distribution for your operating system
(Windows, Mac OS, or Linux):

https://www.anaconda.com/products/individual

By installing Anaconda, you will install Python, Jupyter Notebook, and Spyder. Once Anaconda
is installed, you can launch the Spyder programming environment and run Notebooks (like this
tutorial, for example).

After you have installed Anaconda, start the application. From the home screen, you can start
either Spyder or Jupyter Notebook by double-clicking on the respective icon.

1.1 IDE Spyder

Spyder is the Scientific PYthon Development Environment: a powerful interactive development
environment for the Python language with advanced editing, interactive testing, debugging, and
performance analysis (profiler) capabilities.

https://www.spyder-ide.org/.

• In Spyder, the IPython console is the default Python interpreter.
• Code from the editor can be fully or partially executed in this console.
• The editor supports automatic error-checking for Python.
• The IPython debugger can be activated.
• A profiler is provided to analyze code efficiency.
• An object explorer displays documentation for functions, methods, etc.

2

• The variable explorer shows the names, sizes, and values of numerical variables.
• The file explorer allows you to navigate through your file tree.

Once Spyder is launched, you will see an interface divided into three main panels: the editor, where
you can write and save your commands and programs; the file and figure explorer, along with the
help section; and the console that executes the commands written in Python along with a history
of entered commands. This last feature is very useful for tracing back in time and allows you to see
which commands were executed, in what order, and at what time.

The IPython console allows you to enter commands after the prompt “In []:”.

In [1]: a=2

The example above shows that we assigned the value 2 to the variable a using the = operator. A
variable allows to store data, whether as a scalar, an array, or a string. We can assign values to
multiple variables at the same time. The assignment does not automatically show the value, so
when we run the command a=2, the value of a does not appear. To see the value of a, we can use
the print() function or the variable explorer. In the example below, we created a variable named
a, a one-dimensional integer with a value of “2”.

The variable explorer is our workspace. It provides information about the variables defined at that
moment. It includes features for variable management, like creation, editing, and deletion. This
information can also be accessed with the who and whos commands or the type() command.

In [2]: a1 = a2 = a3 = 3
print(a1 * a2 * a3)

27

In [3]: print(a)

3

2

In [4]: who

a a1 a2 a3

In [5]: whos

Variable Type Data/Info

a int 2
a1 int 3
a2 int 3
a3 int 3

In [6]: type(a)

Out [6]: int

If we want to delete variables, we can use the %reset command (which asks for confirmation) to
clear all variables, or the del command to delete a specific variable. The clear command only
cleans the console while keeping the variables in memory.

In [7]: del a

In [8]: %reset

Once deleted, variables cannot be recovered. Proceed (y/[n])?
Nothing done.

You can also use the addition +, subtraction -, multiplication *, division /, and power ** operators
or combine them. For example, += increments the assigned variable by a specified value.

4

In [9]: a = 2 + 3
print(a)

5

In[10]: print(2**3)

8

In[11]: a += 1
print(a)

6

In[12]: a -= 1
print(a)

5

Python defines several basic operations by default (assignment, arithmetic, power, absolute value,
comparisons, logic):

In[13]: 1 != 2

Out[13]: True

In[14]: True & False

Out[14]: False

In[15]: True & True

Out[15]: True

2 Variable Types

In Python, it is not necessary to declare variables before using them. The value assigned to the
variable defines its type. The main types are:

Type int (integer)

In[16]: a = 300
type(a)

Out[16]: int

5

Type float (floating-point number)

In[17]: a = 1.25e3
type(a)

Out[17]: float

Type complex (complex number)

In[18]: a = 1 + 3j
type(a)

Out[18]: complex

Type str (string)

In[19]: a = "hello"
print(a)
type(a)

hello

Out[19]: str

In[20]: a = 'goodbye'
print(a)
type(a)

goodbye

Out[20]: str

Type bool (booleans)

In[21]: a = True
type(a)

Out[21]: bool

In[22]: b = not(a)
print(b)

False

We used the not() operator to return the opposite of the provided boolean value.

Exercise: Create two variables of type str and add them together. What is the result?

In []:

6

3 Help

There are a vast amount of Python resources available online (https://www.python.org/search/,
https://docs.python.org/3/contents.html, https://docs.python.org/3/tutorial/). However, users
can find local help by pressing Ctrl+I or Cmd+I in front of any object. You can also use the
interactive help provided in the Spyder environment through the help menu or via the console,
for example by entering help(print). Finally, help will automatically appear after typing a left
parenthesis next to an object.

In[23]: help(print)

Help on built-in function print in module builtins:

print(*args, sep=' ', end='\n', file=None, flush=False)
Prints the values to a stream, or to sys.stdout by default.

sep
string inserted between values, default a space.

end
string appended after the last value, default a newline.

file
a file-like object (stream); defaults to the current sys.stdout.

7

flush
whether to forcibly flush the stream.

If we wish to get help regarding the use of the console, we can use ?.

In[24]: ?

Exercise: Search for help on the abs() function and use this function on a number of your choice
defined in a variable a.

In []:

Exercise: Assign to a variable your first name and last name separated by a “.” and calculate the
length of the of the resulting string.

In []:

4 Terminology

Python employs several concepts, unique to the language, that are important to define. You can
find more detailed information in the glossary (https://docs.python.org/3/glossary.html#glossary).

4.1 Scripts

A script is simply a .py file where a set of instructions intended to be executed are stored. Running
the script will create new variables or graphs in the workspace.

4.2 Functions

A function is a set of instruction lines organized according to a well-defined syntax (using the def
keyword) and is reusable. It is used to perform a unique action corresponding to the function. The
corresponding syntax is given in the following example, which simply adds two variables, a and b,
and assigns the result to a variable c, which is returned using the return keyword as the function’s
output:

In [1]: %reset

Once deleted, variables cannot be recovered. Proceed (y/[n])? y

In [2]: def sum_a_b(a,b):
#This function performs the sum of a and b.
c = a + b
return c

In [3]: sum_a_b(1,3)

Out [3]: 4

A function definition associates a function name with a function object in the current namespace,
which can be seen below through the command whos.

8

In [4]: whos

Variable Type Data/Info

sum_a_b function <function sum_a_b at 0x00000266B13A7060>

Exercise: Given the following function

f(x) = ax2 + bx

Create a function that takes x as an argument and returns f(x) with a = 3 and b = 2.4

In []:

4.3 Modules

A module is a Python file (.py) intended to be imported into scripts, the console, or other modules.
It defines classes, functions, and variables meant to be used once imported. This allows for the
reuse of functions written for one program in another without having to copy them. The import
command can be used to import the entire module or parts of it. One can then access them using
module_name.object_name. In the example below, the dummy_module.py contains the following
instructions:

In [9]: #content of the file: dummy_module.py
title = 'Tutorial'

students_number = 300

def number_group(n):
print(n/3)

In[10]: %reset

Once deleted, variables cannot be recovered. Proceed (y/[n])? y

In[11]: import dummy_module

In[12]: whos

Variable Type Data/Info

dummy_module module <module 'dummy_module' fr<...>\\Tuto\\dummy_module.py'>

In[13]: print(dummy_module.title)
n = dummy_module.students_number
dummy_module.number_group(n)

Tutorial
100.0

9

Note that if we execute the contents of the file dummy_module.py directly in the console, we will
create a function number_group(), as well as two variables: the string title and the integer
students_number. Importing the same will only create the dummy_module module in the workspace.

4.4 Packages

They are a certain type of Python modules that can contain sub-modules or sub-packages. Techni-
cally, a package is a module that has a __path__ attribute. Packages are a way to structure various
modules using a “dotted” notation. For example, the module name A.B designates the sub-module
B of package A. You can think of packages as directories in the file system and modules as files
within those directories.

4.5 Libraries

A library can contain dozens, or even hundreds, of individual modules which can provide a wide
range of functionalities. Matplotlib is a library that allows for creating graphs to visualize data
(https://matplotlib.org). The Python standard library (https://docs.python.org/3/library/) con-
tains hundreds of modules to perform common tasks, such as the help() function which invokes
the help system.

4.6 Classes

A class can be seen as a blueprint containing attributes (or variables) and methods (or functions)
that allow for the creation of instances of that class. Classes allow for the definition of new types
of variables specific to the programmer. Instantiating a class creates an object of that class. The
methods associated with a class have privileged access to the class’s data, and the attributes act
like global variables for the methods of the class. A class is defined using the class keyword
followed by the class’ name and a colon. For instance, we might choose to create a student class
where attributes such as age or first name are defined, and a method is provided to calculate their
probability of passing the year. Subsequently, we would use this class to create different student
instances and assess their chances of success.

In[32]: class student:
def __init__(self, age, first_name, name, ects_obtained, bloc1, cycle):

self.age = age
self.prenom = first_name
self.email = first_name + '.' + name + '@student.uliege.be'
self.nom = name
self.ects_obtained = ects_obtained
self.bloc1 = bloc1
self.cycle = cycle

def proba_passing(self):
pr = (self.age/self.ects_obtained)
return pr

s932810 = student(20, 'John', 'Smith', 30, True, 'Bachelor')

10

s493304 = student(22, 'Jane', 'Doe', 30, False, 'Master')

In[33]: print(s932810.email)
print(s493304.email)

John.Smith@student.uliege.be
Jane.Doe@student.uliege.be

In[34]: print(s932810.proba_passing())

0.6666666666666666

In[35]: print(s493304.proba_passing())

0.7333333333333333

The keyword self refers to the instance of the class on which the method will operate, and __init__
is the class constructor that initializes the attributes of the class.

Exercise: Create your own Professor class with its attributes and methods, and find a use for
it.

In []:

5 Script Editing

The current directory is the directory where the user is working. The content of this directory is
displayed in Spyder, and features for managing its content are provided. The content of the current
directory can also be viewed in the command window using the ls command.

11

As defined above, a script is simply a file where a set of commands is saved, which will be executed
in the console exactly as if the commands were entered directly there. Script files are saved in the
current directory with the “.py” extension and can be launched from the editor in Spyder by clicking
on run or by executing the command %run followed by the script file’s name. Anything following
the character # or between the characters """ is considered a comment and will therefore not be
executed. A script can include simple instructions, module imports, and calls to functions, as long
as those functions are defined in the workspace.

In[37]: %run HelloWorld.py

Hello world

Welcome to the University of Liege

The same result is obtained when the commands from the script are entered directly into the console:

In[38]: print("Hello world \n") #This is a comment
print("Welcome to the University of Liege \n")

Hello world

Welcome to the University of Liege

When executing a script, the entire script runs, and no function is called automatically, unlike
other languages like C where the main() function is the first to be executed. This can be prob-
lematic when importing a script rather than running it directly. To avoid this, simply add if
__name__=='__main__': within the script to specify that the subsequent code will only be exe-

12

cuted if the script is called directly and not imported. We illustrate this below with the ping.py
and pingpong.py scripts.

In[172]: %reset

Once deleted, variables cannot be recovered. Proceed (y/[n])? y

In[173]: #Script of pingpong.py
def ping():

print("pong")
ping()

pong

In[174]: #Script of ping.py

def ping():
print("pong")

if __name__ == '__main__':
ping()

pong

In[175]: import pingpong

pong

In[176]: import ping

In[177]: whos

Variable Type Data/Info

ping module <module 'ping' from 'C:\\<...>\\Python\\Tuto\\ping.py'>
pingpong module <module 'pingpong' from '<...>thon\\Tuto\\pingpong.py'>

Exercise: Create a Python script in which a function greet(name) is defined that prints Hello
‘name’, and use this function to display "Hello ‘our name’" in the console.

In []:

5.1 Indentation

Most programming languages have some form of a start-end structure, or opening and closing braces,
or something similar to clearly define the boundaries of code within the loop, or in different parts
of a structure. Generally, experienced programmers also indent their code so that it is easier for
a reader to see what is inside a loop, especially if there are multiple nested loops. But in most
languages, indentation is just a matter of style and the language’s start-end structure determines
how it is actually interpreted by the computer.

13

In Python, indentation is all-important. There is no start and end, just indentation. Anything that
is meant to be at a level within a loop has to be indented at that level. Once the loop is finished,
the indentation should go back to the previous level.

The number of spaces to indent at each level is a matter of style, but you must be consistent within
a single code block. The standard is often 4 spaces, which is typically equivalent to the Tab key on
the keyboard. However, this can vary depending on the configuration of your editor or development
environment. Indentation makes the code readable. Do not hesitate to also add comments to
increase the readability of your code using the # character or the """ """ characters, which allow
for multi-line comments.

In[14]: """
Created on Wed Jan 20 11:19:08 2021
This program calculates the cosine of i for i ranging from 0 to 3 with a step of
1 and displays the last value obtained. It requires no input parameters and
provides no output.

@author : Alan Turing
"""

Import of libraries required for this script
import numpy

Main body of the script
for i in [0, 1, 2, 3]:

x = numpy.cos(i)

Display of the value of x at the end of the loop
print('x equals', x)

x equals -0.9899924966004454

6 Libraries, functions, local and global variables

Upon starting Python, a number of basic functions are available, such as the print() function that
allows you to display variables or strings, as well as the general language syntax. However, most of
the functions needed for specific purposes, like simply calculating the cosine of an angle, are found
in libraries that do not load by default in order to save startup time for Python. For instance, if we
try to execute the cos() function, we encounter an error message :

In[45]: cos(0)

NameError Traceback (most recent call last)
Cell In[45], line 1
----> 1 cos(0)

14

NameError: name 'cos' is not defined

The cosine function is available in the NumPy library. Libraries are imported into the workspace
with the import command. Each library contains many functions. To use the cos() function from
the NumPy library, we need to specify it. To do this, the syntax is as follows: library.function().

In[46]: import numpy
numpy.cos(0)

Out[46]: 1.0

In[47]: type(numpy)

Out[47]: module

In[48]: type(numpy.cos)

Out[48]: numpy.ufunc

We can also choose to import only the cos() function from the NumPy module and rename it, in
this case, to cosine.

In[49]: from numpy import cos as cosine
cosine(0)

Out[49]: 1.0

To define a function, one simply uses the def syntax. The commands entered below in the console
define a function named “PolarToCartesian” which takes as input parameters the radius “rho” and
the angle “theta” defined in degrees. These parameters follow the function name and are specified
within parentheses. This function outputs the corresponding Cartesian coordinates “x” and “y”
using the return command:

In[53]: %reset

Once deleted, variables cannot be recovered. Proceed (y/[n])? y

In[54]: # Importing external libraries or functions
import numpy

Function definition
def PolarToCartesian(rho,theta):

"""
Parameters

rho : radius

theta : angle in degrees

15

Returns

Cartesian coordinates of a point defined from its polar coordinates.

"""

theta = theta * numpy.pi/180
x = rho * numpy.cos(theta)
y = rho * numpy.sin(theta)
return x,y

In[57]: whos

Variable Type Data/Info
--
PolarToCartesian function <function PolarToCartesian at 0x000001DEEF7109A0>
numpy module <module 'numpy' from
'C:\<...>ges\\numpy__init__.py'>

To call a function in the console once it is defined, you need to type its name followed by parentheses,
inputting the function’s arguments inside them (if the function requires any):

In[58]: PolarToCartesian(1,0)

Out[58]: (1.0, 0.0)

As can be seen above, the PolarToCartesian() function requires the use of the NumPy library to
compute the cosine and sine of the given angle.

It is important to note that a function is a set of commands executed in a sub-environment which
only exists during the function’s execution. If we try to call the variable “x” outside of the PolarTo-
Cartesian() function, the console will return an error message. Calling who verifies that the function
exists, but not the variables defined within that function. Therefore, variables defined within a
function have a local scope.

In[59]: x

NameError Traceback (most recent call last)
Cell In[59], line 1
----> 1 x

NameError: name 'x' is not defined

In[60]: who

PolarToCartesian numpy

16

A variable can have a global scope if it is declared outside of a function.

In[61]: global_x = 'global variable'

def dummy_function():
print('I am a ' + global_x)

dummy_function()

I am a global variable

If we want to be able to modify a global variable within a function, we need to declare it as global.

In[62]: global_x = 'global variable'

def dummy_function():
global global_x
global_x = 'I am a ' + global_x

dummy_function()
print(global_x)

I am a global variable

Finally, Python offers the ability to declare a variable as non-local using the nonlocal keyword.
This is used when nested functions are implemented in a script. In this way, the nested function
has access to variables from the enclosing functions. Suppose we want to calculate the area of a
disk and the circumference of a hole centered on this disk, where the hole’s radius is half the size of
the disk’s radius.

In[64]: import numpy

def circle(radius):
pi = numpy.pi
disk_area = pi * (radius) ** 2
def circumference():

nonlocal radius
radius = radius/2
circumference = 2 * pi * radius
return circumference

print(circumference())
return disk_area

print(circle(3))

9.42477796076938
28.274333882308138

The scope of a variable in Python is thus the part of the code where it is visible. It can be local,
non-local, global, and “built-in”.

17

Except for very simple functions, you would not want to write functions directly into the console.
Normally, you should create a .py file containing your function and import the resulting module
into your interactive session or into your script. In the following example, we have copied all the
commands from the PolarToCartesian function mentioned above into a file named “chgcoord.py”.
We import the module “chgcoor”, which we rename to “coor”, and then use the “PolarToCartesian”
function defined within the module.

In[15]: %reset

Once deleted, variables cannot be recovered. Proceed (y/[n])? y

In[16]: import chgcoor as coor

In[17]: whos

Variable Type Data/Info

coor module <module 'chgcoor' from 'C<...>ython\\Tuto\\chgcoor.py'>

In[18]: coor.PolarToCartesian(1,0)

Out[18]: (1.0, 0.0)

6.1 List of Useful Libraries

Below we list a series of useful libraries and functions. Do not hesitate to read the corresponding
help for the various functions provided and to test them out for yourself.

matplotlib

Useful module: pyplot

Examples of Useful Functions: plot() legend() xlabel() ylabel() show() xlim() grid()

numpy

Examples of Useful Functions: abs() sum() zeros() asarray() arange() min() max() where() linspace()
shape() loadtxt() floor() ceil() log() cos() sqrt()

scipy

Examples of Useful Functions: integrate.solve_ivp() interpolate.splrep() interpolate.splev()

Exercise: Given the quadratic equation

ax2 + bx+ c = 0,

create a function that takes the coefficients a, b, c as arguments and returns the two roots.

In []:

18

7 Other types of objects: list, tuple, and array

We will use the numpy library to perform mathematical operations on “arrays”. In addition to these
arrays, Python has other data types that can store sequences of items: “lists” and “tuples”. However,
these are not used for mathematical operations.

7.1 List and tuple

A list is defined by [] while a tuple is defined by (). You can modify the values in a list but not
in a tuple.

In[70]: a_list=[2, 4, 6, 8, 10]
print(a_list)
type(a_list)

[2, 4, 6, 8, 10]

Out[70]: list

In[71]: a_tuple=(2, 4, 6, 8, 10)
print(a_tuple)
type(a_tuple)

(2, 4, 6, 8, 10)

Out[71]: tuple

If we attempt to perform an operation on these two objects, we see that what might be considered
as a mathematical operation actually creates a new list containing a_list twice, while it is not
possible to modify a_tuple.

In[72]: a_list * 2

Out[72]: [2, 4, 6, 8, 10, 2, 4, 6, 8, 10]

In[73]: a_tuple + 2

TypeError Traceback (most recent call last)
Cell In[73], line 1
----> 1 a_tuple + 2

TypeError: can only concatenate tuple (not "int") to tuple

Lists and tuples can contain sequences of various types, not just numbers. In the example below,
we create a list containing a string, numbers, and a function.

In[74]: a_varied_list = ['list', 1, 20.45, print]
print(a_varied_list)

19

['list', 1, 20.45, <built-in function print>]

7.2 1-dimensional Arrays

To perform mathematical operations on objects containing sequences of values, we will use arrays.
For this, we will need the libraries NumPy and matplotlib.

In[75]: %matplotlib inline
import numpy as np
import matplotlib.pyplot as plt

Then, we can use various functions to create a 1-dimensional array, for example, ranging from 1 to
5:

In[76]: x = np.array([1, 2, 3, 4, 5]) # We have manually inserted the individual
elements of the array using a list

print('x:', x, type(x))

y = np.arange(1,6,1) #Starts from 1, stops before 6 with a step of 1
print('y:', y, type(y))

z = np.linspace(1,5,5) #Starts from 1 up to 5 with 5 points spaced uniformly
print('z:', z, type(z))

x: [1 2 3 4 5] <class 'numpy.ndarray'>
y: [1 2 3 4 5] <class 'numpy.ndarray'>
z: [1. 2. 3. 4. 5.] <class 'numpy.ndarray'>

By using the len (built-in) function, shape (useful for arrays with more than 1 dimension), and
ndim (methods of ndarray), we can determine the lengths, shapes and dimensions of the arrays:

In[77]: print(len(x))

5

In[78]: x.shape

Out[78]: (5,)

In[79]: x.ndim

Out[79]: 1

To access the elements of arrays, we use their linear indices starting from 0. Thus, the first element
of a 1-dimensional array has the index 0. The last element of a 1-dimensional array can be accessed
using the index -1. Indices are specified using square brackets [index]. The values of the elements
can then be modified.

In[80]: print('The value of the first element of x is', x[0])

x[0] = 10

20

print('The first element of x is now', x[0])

The value of the first element of x is 1
The first element of x is now 10

In[81]: x[-1]

Out[81]: 5

We can also access multiple elements by using : and specifying the start, end, and step.

In[82]: x[0:4:2] #x[start:before_end:step]

Out[82]: array([10, 3])

In[83]: x[:]

Out[83]: array([10, 2, 3, 4, 5])

It is also possible to go through arrays in reverse.

In[84]: x[len(x)::-1]

Out[84]: array([5, 4, 3, 2, 10])

We can also search for specific elements in an array using the where function, as illustrated below:

In[85]: a = np.array([-1, 0, 1.3, 4, -10, 0.4, 3, 9, 1])
ind_a_neg = np.where(a < 0)
print('The indices corresponding to negative values are:', ind_a_neg)
print('The negative values of a are:', a[ind_a_neg])

The indices corresponding to negative values are: (array([0, 4], dtype=int64),)
The negative values of a are: [-1. -10.]

Slices in Python allow for segmenting objects containing sequences of values from an object a
(nparray, list, tuple, string) by selecting only a portion of them. The syntax for slices is a[i:j] or
s[i:j:k], where the indices i (start), j (end), and k (increment) can be omitted.

In[86]: a = 'abcdefghijklmnopqrstuvwxyz'
type(a)

Out[86]: str

In[87]: a[0:2]

Out[87]: 'ab'

In[88]: a[0:]

21

Out[88]: 'abcdefghijklmnopqrstuvwxyz'

In[89]: a[0:26:2]

Out[89]: 'acegikmoqsuwy'

In[90]: a[:12]

Out[90]: 'abcdefghijkl'

In[91]: a[:]

Out[91]: 'abcdefghijklmnopqrstuvwxyz'

In[92]: a[-1]

Out[92]: 'z'

In[93]: a_tuple=(1, 2, 3, 'quatre')

In[94]: a_tuple[2:4]

Out[94]: (3, 'quatre')

In[95]: a_list=[1, 3, 4, 4]
a_list[0:3]

Out[95]: [1, 3, 4]

In[96]: a_array=np.array(a_list)
a_array[0:3]

Out[96]: array([1, 3, 4])

7.2.1 Operations on a 1-dimensional array

When performing operations on NumPy arrays, the execution speed can be greatly improved by
avoiding the use of loops to traverse the arrays and by using the various NumPy functions that can
be applied directly to the arrays.

In[97]: x = np.arange(1,6,1)
y = np.zeros(x.shape) # initializing y to the same size as x
for i in range(len(x)):

y[i] = np.sin(x[i])
print(y)

[0.84147098 0.90929743 0.14112001 -0.7568025 -0.95892427]

This can be simply written as:

22

In[98]: y = np.sin(x)
print(y)

[0.84147098 0.90929743 0.14112001 -0.7568025 -0.95892427]

Vectorized operations can be applied to 1-dimensional arrays of type array using the appropriate
functions from NumPy, while basic operations apply element by element. For example, the multipli-
cation of x by y using the * operator yields:

In[99]: x = np.arange(1,6,1)
y = np.arange(0,5,1)
print('x:', x)
print('y:', y)
x * y

x: [1 2 3 4 5]
y: [0 1 2 3 4]

Out[99]: array([0, 2, 6, 12, 20])

To compute the dot product of vectors x and y, we can use the dot function from NumPy.

In[100]: np.dot(x,y)

Out[100]: 40

Exercise: Create a one-dimensional array (row vector) x with 5 consecutive numbers between 2.
and 3., spaced by equal intervals.

In []:

Exercise: Add 1 to the second element of x.

In []:

Exercise: Create a second row array y of the same dimension as x, but with elements being
consecutive even numbers starting at 4.

In []:

7.3 2-Dimensional Arrays

Arrays can be of arbitrary dimensions, but 2-dimensional arrays, for which matrix operations can
be defined, are frequently used. To create these arrays, we can reuse the array function from NumPy.

In[101]: A = np.array([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]])
print(A)
print('A has', np.ndim(A), 'dimensions')

[[1 2 3 4 5]
[6 7 8 9 10]

23

[11 12 13 14 15]]
A has 2 dimensions

In[102]: print('The size of A is:', A.shape)

The size of A is: (3, 5)

The flatten and reshape functions from NumPy allow for modifying the dimensions of arrays.
flatten transforms a multi-dimensional array into a one-dimensional array, while reshape lets
you specify the dimensions of the array you wish to obtain. flatten does not require any input
parameters, whereas reshape requires that the dimensions of the two arrays be compatible.

In[103]: B = A.flatten()
print(A.flatten())
print('A.flatten() has', np.ndim(B), 'dimension(s)')

[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15]
A.flatten() has 1 dimension(s)

In[104]: B.reshape(3,5)

Out[104]: array([[1, 2, 3, 4, 5],
[6, 7, 8, 9, 10],
[11, 12, 13, 14, 15]])

In[105]: B.reshape(3,6)

ValueError Traceback (most recent call last)
Cell In[105], line 1
----> 1 B.reshape(3,6)

ValueError: cannot reshape array of size 15 into shape (3,6)

The index of a 2-dimensional array is specified by two values: the first corresponds to the rows,
and the second to the columns of the array. These are provided using a tuple (thus defined in
parentheses). In the example below, we create a 2-dimensional array filled with 0s, and we modify
it by changing one element, then part of a row, and finally the last element.

In[106]: B = np.zeros((3,5))
print('Initialization of B:')
print(B)
print('Modification of B:')
B[0,0] = 5
B[1,2:] = 10
B[-1,-1] = 500
print(B)

24

Initialization of B:
[[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]]

Modification of B:
[[5. 0. 0. 0. 0.]
[0. 0. 10. 10. 10.]
[0. 0. 0. 0. 500.]]

As before, the basic operations are performed element by element:

In[107]: print(A * B)

[[5.0e+00 0.0e+00 0.0e+00 0.0e+00 0.0e+00]
[0.0e+00 0.0e+00 8.0e+01 9.0e+01 1.0e+02]
[0.0e+00 0.0e+00 0.0e+00 0.0e+00 7.5e+03]]

The array object A from NumPy, has some automatically defined methods, such as the transpose of
A, denoted as A.T. Matrix operations can be performed using the functions of NumPy.

In[108]: print(np.dot(A.T,B))

[[5.00e+00 0.00e+00 6.00e+01 6.00e+01 5.56e+03]
[1.00e+01 0.00e+00 7.00e+01 7.00e+01 6.07e+03]
[1.50e+01 0.00e+00 8.00e+01 8.00e+01 6.58e+03]
[2.00e+01 0.00e+00 9.00e+01 9.00e+01 7.09e+03]
[2.50e+01 0.00e+00 1.00e+02 1.00e+02 7.60e+03]]

Exercise: Create a 2-dimensional ndarray called A where the first row is equal to x, the second
row is filled with 1s, and the third row is equal to y. x and y are defined in the previous exercise.

In []:

Exercise: Consider two matrices:

A =

[
4 −5√
3 π/4

]
, B =

[
2 3 + i

−72/3 0.2

]
where i is the imaginary unit. Calculate the following elements:

A+B, AB, A2, AT , B−1, BTAT , A2 +B2 −AB

In []:

8 Solving Systems of Linear Equations

To solve a linear system Ax = b, for example,

 5 6 10
−3 0 14
0 −7 21

 x1
x2
x3

 =

 4
10
0

25

We can use the solve method, which is part of the linalg sub-library of NumPy. The solving
method takes a two-dimensional array (the matrix A) and a one-dimensional array (the right-hand
side, b) as input, and it returns the solution.

In[109]: A = np.array([[5, 6, 10],[-3, 0, 14], [0, -7, 21]])
b = np.array([4, 10, 0])
solution = np.linalg.solve(A, b)
print(solution)

[-1.45454545 1.20779221 0.4025974]

One can simply verify that the provided solution is correct by multiplying matrix A by the solution.

In[110]: np.dot(A,solution)

Out[110]: array([4., 10., 0.])

Exercise: Solve the following system of linear equations:

5.4x+ 2y = 0− x+ 4y − 25z = 33x+ 7z = 2

In []:

9 Control Structures: for, if/elif/else,while, break

Python comes with built-in control structures. They allow for loops, checking conditions before
executing certain lines of code. We will need numpy and matplotlib here, so we start by importing
them.

9.1 The for Loop

The syntax is as follows and allows executing a block of commands repeatedly:

In[111]: for i in [0, 1, 2, 3, 4]: # The line ends with ":"
print('The value of i is:', i) # The block of commands is indented

print('We have exited the loop')

The value of i is: 0
The value of i is: 1
The value of i is: 2
The value of i is: 3
The value of i is: 4
We have exited the loop

It should be noted here that at the end of the for, it is necessary to introduce : and indent the
block of commands to be executed within the loop. The end of the indentation marks the end of
the loop.

We can use for loops to assign values to elements of an array.

26

In[112]: x = np.linspace(0, 2*np.pi, 200)
y = np.zeros_like(x)
for i in range(len(x)):

y[i] = np.cos(x[i])
plt.plot(x,y);

Note that we should have taken advantage of the vectorization offered by NumPy and avoided writing
a for loop:

In[113]: plt.plot(x,np.cos(x));

27

9.2 if/elif/else

The if condition allows executing a block of commands as long as the result of the evaluation of
the if is True.

In[114]: a = 2
if a == 2:

print('a is indeed equal to', a)

a is indeed equal to 2

The if condition can be followed by an else which will be evaluated if the evaluation of the if is
False.

In[115]: a = 3
if a == 2:

print('a is indeed equal to', a)
else:

print('a is not equal to 2')

a is not equal to 2

Finally, we can use the elif command to add conditions before using the else.

In[116]: a = 3
if a == 2:

print('a is equal to', a)
elif a == 3:

print('a is equal to', a)
else:

print('a is neither equal to 2 nor 3')

a is equal to 3

9.3 The while Loop / break / continue

The while loop allows executing a block of commands until a condition is met or when a break
command is encountered. The syntax is as follows:

In[117]: a = 0
while a < 6:

a += 1
print(a)

1
2
3
4
5
6

28

It is important to be cautious not to create an infinite loop and to use the break command after a
certain number of iterations in the loop.

In[118]: a = 0
while a < 60000:

a += 1
print(a)
if a > 15:

print('Early loop exit')
break

print('We have exited the loop')

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
Early loop exit
We have exited the loop

The continue statement is used to skip the remaining code within a loop for the current iteration
only.

In[119]: a = 0
while a < 5:

a += 1
if a == 3:

continue
print(a)

1
2
4
5

Exercise: The exponential function has the series expansion:

exp(x) =
∞∑
i=0

xi

i!

29

Write a Python function that takes the input variable n and calculates this series up to the first n+1
terms.

In []:

10 Polynomials

Polynomials can be designed and manipulated using the numpy.polynomial class, which provides
various options (power, Chebyshev, Legendre, etc.). For example, the polynomial

x4 − 12x3 + 5x

can be represented by its coefficients listed in the coef list below.

In[25]: coef = [0, 5, 0, -12, 1]

In[26]: from numpy.polynomial import Polynomial as poly
p = poly(coef)
print(p)

0.0 + 5.0 x + 0.0 x**2 - 12.0 x**3 + 1.0 x**4

In[27]: type(p)

Out[27]: numpy.polynomial.polynomial.Polynomial

We can then perform a variety of operations such as calculating the derivative of the polynomial,
evaluating it at a point (for example, at x = 5), or determining its roots.

In[28]: dp = p.deriv(1)
print(dp)

5.0 + 0.0 x - 36.0 x**2 + 4.0 x**3

In[29]: p(5)

Out[29]: -850.0

In[30]: p.roots()

Out[30]: array([-0.62921183, 0. , 0.66413705, 11.96507478])

If a set of points is given to us but we do not know the associated polynomial, we can fit a polynomial
of a certain degree to these points using the least squares method with the polyfit function.

In[31]: from numpy.polynomial.polynomial import polyfit
coef2 = polyfit([0, 1, 4, 5],[-1, 2, 1, 4],3)

In[32]: p2 = poly(coef2)
print(p2)

30

-1.0 + 5.16666667 x - 2.5 x**2 + 0.33333333 x**3

11 Graphics or Plots

11.1 Basics

To create graphs in Python, we will use the matplotlib library and the sub-library pyplot. The
full set of available graphs is described here: https://matplotlib.org/gallery.html (The command
%matplotlib inline is used in this tutorial to prevent the graphs from appearing on a separate
page but is not necessary when using Spyder.)

In[36]: %matplotlib inline
import numpy as np
import matplotlib.pyplot as plt

We can now utilize the plot functions using the command plt.function, for example the function
plot(x, y, string) where the string defines the type of marker or line style used. In the following
example, “o” stands for a circle and “r” for the colour red.

In[37]: plt.plot(1,0,'or');

We can thus visualize the polynomial generated above using the arrays x and y.

In[38]: x = np.linspace(-1, 12, 200)
plt.plot(x,p(x),'g--');

31

The plot function can accept numerous optional keyword arguments. These are specified in the
plot function as arguments with the syntax keyword=value. For example, to plot the polynomial
in red with a line thickness of 4, one would use:

In[39]: plt.plot(x,p(x),'r--',linewidth = 4);

11.2 Display multiple curves in one graph, create a new figure

To create a new figure, you need to use the figure function from matplotlib.pyplot. You can
then specify the size of the figure. The subsequent commands using the plot function will then use
this figure, for instance, to overlay curves. You can also add a legend, a title, and label the axes.

32

In[137]: plt.figure(figsize=(14, 10)) # Create a new figure
plt.plot(x, p(x), 'r');
plt.plot(x, np.zeros_like(x), 'b');
plt.plot(p.roots(), np.zeros_like(p.roots()), 'og')
plt.legend(['polynomial', 'line', 'roots'], loc='best') # Add a legend

plt.title('Degree 4 Polynomial') # Add a title
plt.ylabel('Y Axis') # Labeling the y-axis
plt.xlabel('X Axis') # Labeling the x-axis

plt.figure() # Create a new figure
plt.plot(x, p(x), 'r');

33

Exercise: Plot the graph of the function

y(x) = e−0.8xsinωx

for ω = 10 rad/s and x ∈ [0 10] s.

In []:

Exercise: Given the function:

y(x) = 10 + 5e−xcos(ωx+ 0.5)

Write a script that plots the graph for three distinct values of ω: 1 rad/s, 3 rad/s and 10 rad/s over
the range x ∈ [0 5] s. The three curves should appear in green, with a solid line for ω = 1 rad/s, a
dashed line for ω = 3 rad/s, and a dotted line for ω = 10 rad/s.

In []:

12 Interpolation using splines

Python offers the functionality to perform spline interpolations through the SciPy library and its
submodule interpolate. We will use, for instance, the CubicSpline function.

In[138]: import numpy as np
import matplotlib
from scipy.interpolate import CubicSpline
%matplotlib inline
import matplotlib.pyplot as plt

First, let’s consider a set of points x and y between which we wish to interpolate.

34

In[139]: x = np.linspace(0,100,10)
y = np.random.rand(10)
plt.plot(x,y,'o');

In[140]: x_cs = np.linspace(0,100,500)
cs = CubicSpline(x,y,bc_type='clamped') # the bc_type parameter allows setting

certain boundary conditions
plt.plot(x_cs,cs(x_cs),label='Spline')
plt.plot(x,y,'ro', label='Data')
plt.legend(loc='best')

Out[140]: <matplotlib.legend.Legend at 0x1def766d750>

35

13 Inputs and Outputs

Instead of generating points randomly as in the cubic spline example, we might need to import
them from an external source. For instance, these points could be contained in the following .txt
file named data.txt:

In []: 0. -1.
1. 2.
2. 0.
3. 0.1
4. -0.1
5. -2.
6. -8.
7. -9.

The loadtxt function from NumPy allows us to open this file, read its contents, and store them in a
new variable.

In[141]: import numpy as np
a = np.loadtxt('data.txt')
print(a)
type(a)

[[0. -1.]
[1. 2.]
[3. 0.1]
[4. -0.1]
[5. -2.]
[6. -8.]
[7. -9.]]

Out[141]: numpy.ndarray

We can now perform mathematical operations on the created array (here we normalize the second
column) and then save it as a .txt format using the savetxt function from NumPy.

In[142]: a[:,1]=a[:,1]/np.max(a[:,1])
np.savetxt('normalised_data.txt',a)
print(a)

[[0. -0.5]
[1. 1.]
[3. 0.05]
[4. -0.05]
[5. -1.]
[6. -4.]
[7. -4.5]]

Other options are available through basic functions like open, which is used to read, write, and
modify a file, or input(), which allows for keyboard input. Numerous modules also exist for

36

reading various types of files, such as xlrd, which is used to read files from Microsoft Excel (.xlx,
.xls).

In[143]: first_name = input('What is your first name? :')

What is your first name? :Albert

In[144]: print(first_name)

Albert

In[145]: with open('data.txt') as f_data:
print(f_data.read())

0. -1.
1. 2.
3. 0.1
4. -0.1
5. -2.
6. -8.
7. -9.

Exercise: Plot the graph of the cubic spline interpolation and the linear interpolation of the data
points from the ‘normalised_data.txt’ file above.

In []:

14 Solving differential equations

Consider the differential equation of the Van der Pol oscillator:
dx1
dt

= x2 (1)

dx2
dt

= ϵω(1− x21)x2 − ω2x1 (2)

With the constants ϵ and ω equal to 0.1 and 1, respectively. In Python, this differential equation
can be represented by a function defined as follows:

In[146]: def odefunction(t, y, const):
Ordinary differential equation system defined by:
t: the time
y: system variables
The function returns dy, an array containing the derivatives

Necessary import
import numpy as np

Main part
Constant definitions

37

epsilon = const[0]
omega = const[1]

dy = np.zeros(2)
dy[0] = y[1]
dy[1] = epsilon * omega * (1 - y[0]**2) * y[1] - (omega**2) * y[0]

return dy

These lines of code are saved in a file named OdeFun.py. The numerical solution requires the SciPy
library and the solve_ivp function from the scipy.integrate sub-library. Here, the output from
odefunction provides a solution of type list, but we could also output a type numpy.ndarray.

In[147]: %reset
from scipy.integrate import solve_ivp as ode45 # Defining the solver (ode45)
from matplotlib import pyplot
import numpy
import OdeFun

Once deleted, variables cannot be recovered. Proceed (y/[n])? y

In[148]: whos

Variable Type Data/Info

OdeFun module <module 'OdeFun' from 'C:<...>Python\\Tuto\\OdeFun.py'>
numpy module <module 'numpy' from 'C:\<...>ges\\numpy__init__.py'>
ode45 function <function solve_ivp at 0x000001DEF4C6D760>
pyplot module <module 'matplotlib.pyplo<...>\\matplotlib\\pyplot.py'>

The function scipy.integrate.solve_ivp, which is renamed here as ode45, uses by default an
explicit Runge-Kutta method to solve the equation, and the integration parameters can be adjusted
with options. The following code solves the differential equation between 0 and 100 and displays
the result on the screen:

In[149]: c = [0.1, 1]
solution = ode45(lambda t, y: OdeFun.odefunction(t, y, c), [0, 100], [0, 1])
pyplot.plot(solution.t, solution.y[0, :])
pyplot.title('Solution of the Van der Pol Oscillator') # Adding a title
pyplot.ylabel('x_1') # Labeling the y-axis
pyplot.xlabel('Time') # Labeling the x-axis

Out[149]: Text(0.5, 0, 'Time')

38

The lambda function serves to replace the call to OdeFun.odefunction, which normally takes three
arguments (t, y, c) as input, with a call to a lambda function with two arguments (t, y) that is
accepted by the solver scipy.integrate.solve_ivp.

The solver scipy.integrate.solve_ivp provides a significant number of options. These options,
for instance, allow defining values for relative and absolute tolerance.

In[150]: solution = ode45(lambda t, y: OdeFun.odefunction(t,y,c), [0,100], [0, 1],␣
↪→rtol=1e-8)

pyplot.plot(solution.t, solution.y[0,:]);
pyplot.title('Solution of the Van der Pol Oscillator'); # Adding a title
pyplot.ylabel('x_1'); # Labeling the y-axis
pyplot.xlabel('Time'); # Labeling the x-axis

39

It is often useful to determine when the solution to the system of differential equations reaches a
particular value (such as 0, for example). This can be achieved by defining specific options. This
requires creating a function that defines the type of event to determine, and then we recalculate the
solution. The events are stored in solution.t_events and solution.y_events.

For more information, please refer to the documentation for the scipy.integrate.solve_ivp func-
tion.

In[151]: def event(t,y):
return y[0]

In[152]: solution = ode45(lambda t, y: OdeFun.odefunction(t,y,c), [0,100], [0, 1],␣
↪→events=event)

pyplot.plot(solution.t, solution.y[0,:]);
pyplot.plot(solution.t_events[0], solution.y_events[0][:,0], 'rx');
pyplot.title('Solution of the Van der Pol Oscillator'); # Adding a title
pyplot.ylabel('x_1'); # Labeling the y-axis
pyplot.xlabel('Time'); # Labeling the x-axis

Exercise: For the above Van der Pol oscillator, find all the points where the value of x1 is 1 and
plot them on a graph illustrating this.

In []:

40

Exercise: Solve the following differential equation:

dy1
dt

= cos(y2) ∗ y3

dy2
dt

= −y1/y3

dy3
dt

= −0.8 y1y2

with the initial conditions y1(0) = 0, y2(0) = 1 and y3(0) = 1 over the time range from 0 to 100.
Plot the evolution of the three variables on the same graph. Find the zeros of the variable y2 if any
exist.

In []:

15 Debugging

Spyder includes a debugger integrated into the editor:

https://docs.spyder-ide.org/current/panes/debugging.html

Firstly, when editing a .py file, the editor will automatically detect syntax errors, for instance, and
will display a red circle with a cross inside to signal the error. This type of critical error will prevent
the script from running. The editor can also display a warning icon to indicate, for example, the
non-use of an imported library. This is not a critical error, and the program will be able to run.

41

In addition to this real-time verification, Spyder offers a tool that allows stopping a program during
its execution to inspect the values of different variables and detect potential errors. For this purpose,
breakpoints must be set beforehand in the .py file(s). To set a breakpoint, simply click to the right
of the corresponding line number, and a red dot will appear to the left of the current line.

The program is then run using the Debug file button. The program stops at the breakpoint indicated
by an arrow. You can examine the contents of the variables in the Workspace, step over to the next
line, continue execution until the next breakpoint, or stop the program altogether. When a line
calls a function, it is possible to step into that function or skip directly to the next line.

42

Debugging features are also available when a program produces an error. In the console, the error
message in red indicates the line where the error occurred. You can directly access it by clicking on
the line number.

43

Exercise: Debug the following code:

In []: %reset
a == 2
b == 3

def sum(a, b)
c = a + b
return c

sum(12 14)

if a = 2;
print(a is equal to two)

else:
print(a, "is different from two")

16 Performance Analysis

Advanced performance tools exist for analyzing the efficiency of Python programs:
https://docs.python.org/3/library/profile.html

The cProfile module allows you to see how much time the executed program spends in each
function and the number of function calls:

ncalls: the number of calls to a function

tottime: total time spent in a function without counting the time spent in calls to sub-functions

percall: time spent per call

44

cumtime: cumulative time spent in the function and sub-functions

percall: cumtime divided by the number of calls

filename:lineno(function): function data

The Spyder IDE provides a readable graphical interface allowing us to quickly analyze the time
taken by our Python scripts. To access it, you first need to ensure you have activated the Profiler
through the View > Panes > Profiler menu.

Now, let’s consider the script test_profile.py below which includes two loops, a custom function
fun, and uses functions from the NumPy library to interpolate a function defined at several points.

In[154]: import numpy as np
from numpy.polynomial.polynomial import polyfit
from numpy.polynomial import Polynomial as poly

def fun(x):
return x**2+np.sin(x)-1

x = np.random.rand(500,500)
y = np.zeros_like(x)
IT1 = range(x.shape[0])
IT2 = range(x.shape[1])
slow = True
if slow == True:

for i in IT1:
for j in IT2:

coef = polyfit([0, 1, 4, 5],[-1, 2, 1, 4],3)

45

p=poly(coef)
y[i,j]=fun(x[i,j])/2 + p(x[i,j])

else:
coef = polyfit([0, 1, 4, 5],[-1, 2, 1, 4],3)
p=poly(coef)
for i in IT1:

for j in IT2:
y[i,j]=fun(x[i,j])/2 + p(x[i,j])

We will test it with the help of the Profiler and sort the results by cumulative time to see which
part of the code takes the longest to run. Go in the menu Run > Run profiler. First, we run a
“slow” version of the code with the variable slow = True and we get the following result:

We can see that when executing the script with slow = True, we calculate the coefficients of a
polynomial using polyfit each time in both loops, even though these coefficients are independent
of the loops. The time taken to call the polyfit function 40000 times is 3.87 seconds.

To improve the efficiency of this function, we can move the coefficient calculation out of the loops
and compute it only once (slow = False). We can then verify that polyfit is called only once and
that the time taken to execute the script is much shorter.

46

There are also functions in Spyder to time the execution of Python code, such as %time and %timeit.

Exercise: Create a script of your choice to compare the use of the sum() function from NumPy
with your own function, which should use a for loop to calculate the sum of the elements of a one-
dimensional ndarray. Analyze the performance of your function compared to the NumPy function.

In []:

17 End of the tutorial

We have come to the end of this tutorial. Before diving into Python, try out the various features
presented here. Do not hesitate to seek more information whenever you use python.

In[155]: %reset

Once deleted, variables cannot be recovered. Proceed (y/[n])? y

Print dependencies

In[156]: %load_ext watermark

In[157]: %watermark -v -m -p numpy,scipy,matplotlib,time,watermark
print(" ")
%watermark -u -n -t -z

Python implementation: CPython
Python version : 3.11.4
IPython version : 8.12.2

47

numpy : 1.25.2
scipy : 1.11.1
matplotlib: 3.7.1
time : unknown
watermark : 2.4.3

Compiler : MSC v.1916 64 bit (AMD64)
OS : Windows
Release : 10
Machine : AMD64
Processor : Intel64 Family 6 Model 165 Stepping 2, GenuineIntel
CPU cores : 12
Architecture: 64bit

Last updated: Mon Aug 21 2023 11:36:05Paris, Madrid (heure d’été)

48

	Installing Anaconda, Python, and the Spyder IDE
	IDE Spyder

	Variable Types
	Help
	Terminology
	Scripts
	Functions
	Modules
	Packages
	Libraries
	Classes

	Script Editing
	Indentation

	Libraries, functions, local and global variables
	List of Useful Libraries

	Other types of objects: list, tuple, and array
	List and tuple
	1-dimensional Arrays
	Operations on a 1-dimensional array

	2-Dimensional Arrays

	Solving Systems of Linear Equations
	Control Structures: for, if/elif/else,while, break
	The for Loop
	if/elif/else
	The while Loop / break / continue

	Polynomials
	Graphics or Plots
	Basics
	Display multiple curves in one graph, create a new figure

	Interpolation using splines
	Inputs and Outputs
	Solving differential equations
	Debugging
	Performance Analysis
	End of the tutorial

