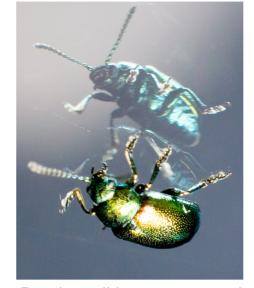
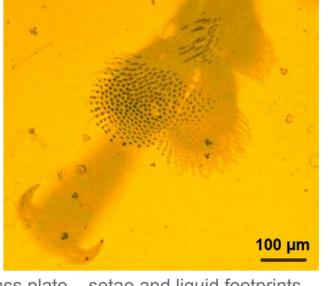
# MICROFLUIDICS LAB

## **Research focus** Sub-millimeter Microtechnology fluid dynamics **Microfabrication Innovation based** on surface tension Life science **High-speed** (biology, agro, medical, environment) microscopy imaging **Sustainability**


How does small scale fluid motion affect our lives ? How could we engineer at this scale ?

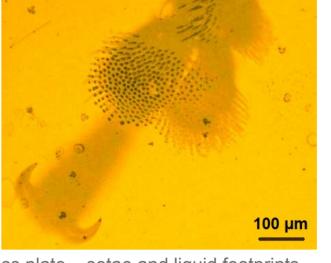

## **Drop impacts**

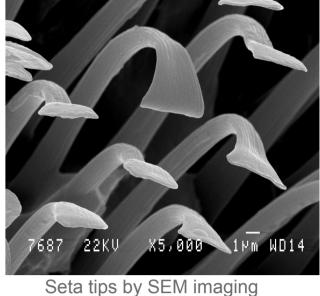
#### Superhydrophobicity

## **Bio-inspired adhesion**

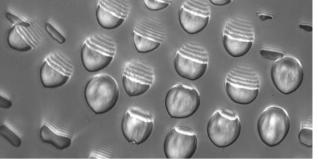
Applications: Prehension in micro-robotics. Passive liquid dispensing. Hexapod walking  $\rightarrow$  feet covered with micron-scaled hairs (setae). **Principle:** Adhesion provided by liquid bridge at their tip.







**Bioinspired microhairs** 

Beetle walking on a smooth glass plate – setae and liquid footprints









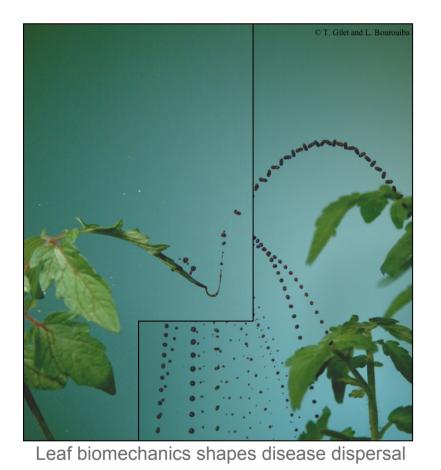





Various tip geometry 

mechanics

Applications: Self-cleaning, drag reduction, underwater breathing **Principle:** Microstructures + coating  $\rightarrow$  air trapped








Liquid break-up

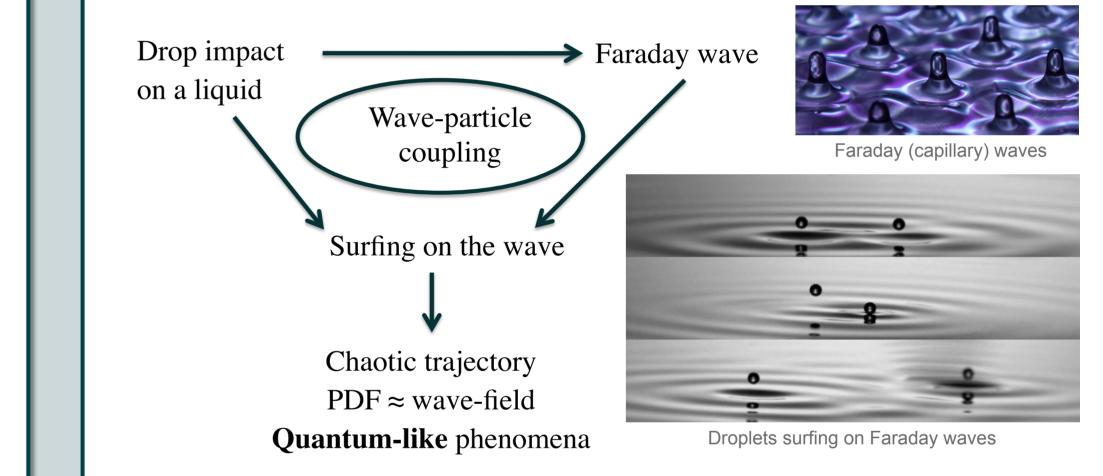




#### **Cave formation**

Goal: Stalagmite shape → paleoclimate Application: Groundwater management **Principle:** Splashing drop  $\rightarrow$  calcite deposition  $\rightarrow$  growth rate

### Liquid break-up vs. plant biomechanics


**Application:** Disease spreading in agriculture **Principle:** Raindrops impact leafs  $\rightarrow$  ejected droplets disperse foliar pathogens

## **Microfluidics**

Goal: miniaturize and automate fluid handling, e.g. in bioassays **Applications:** diagnostics, drug discovery, cancer research, neonatology

## Vibration-induced drop motion

**Goal:** Macroscopic analog of quantum mechanics Application: Philosophy of science **Principle:** Self-propulsion of bouncing droplets on a vibrated bath



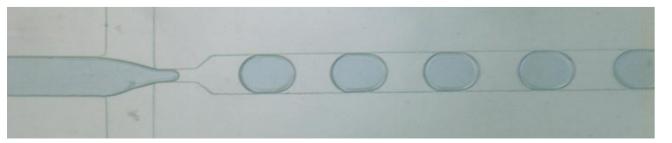
### Resources

#### **Methodology & expertise**

- Bioinspired microstructures (Length scale ~  $30\mu$ m)  $\rightarrow$  microfabrication
- High-speed imaging, light microscopy  $\rightarrow$  image processing, motion analysis
- Modeling: scaling laws, lumped-elements  $\rightarrow$  design rules

## **Researchers**

#### (Jan. 2016) Laurent Bataille, Romain Trigaux




Master in photoresist on wafer

Microfluidic mixer

Laminar mixing

**Principle:** Off-chip active pumping OR on-chip passive capillary pumping **Droplets** = conveyors & micro-reactors (content = e.g. chemicals, living cells) Microchannel **networks** → Traffic control



Droplet production in microchannels



Microchip interfacing

Master's thesis Research Eng. PhD students Post-docs

Assistant professor Alumni

• ULg:

• ULB:

• MIT:

Julien Straat

Sophie Gernay, Sophie Lejeune, Stéphanie Van Loo Naresh Sampara (PhD Nottingham U.) Loïc Tadrist (PhD Polytechnique Paris) Tristan Gilet (PhD ULg, Post-doc MIT) Matthias Mayser (PhD U. Bonn)

### Main collaborations

GRASP, ARC Quandrops, MicroSys, GIGA cancer, CHR neonatology, CIP, Funct. & Evol. Morph. Lab. Pierre Lambert → IAP microMAST Lydia Bourouiba, John W.M. Bush Walter Federle • U. Cambridge: Unisensor, M4KE.IT • Companies:



University of Liège, Belgium Aerospace & Mechanics - www.facsa.ulg.ac.be **Microfluidics Lab** Contact: Tristan GILET, I Tristan.Gilet@ulg.ac.be, T +32 4 366 9166

Note: All the pictures on this poster have been taken by group members.