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The key to Science ll. Optimal experimental design

How do we design the best
Hypothesis(¢) >| Experiment(¢) —  Conclusions(6) scientific experiment? Posterior

\ / If an experiment is configured by

¢, then we want to find the
experiment that maximizes the

How do we look for new scientific laws? A guess is a parameterized theory arg max, A(¢)
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Solution: optimal experimental design! Execute under ¢:

- 0 =N

6" =argmax, p(x | 6)

needs to be run multiple times in order to

|. Likelihood-free inference make the estimations for different values of ¢.

- optimization: estimating the reduction of

Simulate experiment Inference

To validate a guess and compare it to Nature, we need to compute its

consequences. The expected consequences are usually modelled through a uncertainty is slow. We need an efficient

computer simulator. optimization algorithm (e.g., Bayesian ‘
optimization).

argmax A(P)

lll. Exploring the theory space

Can we automatically explore the space of theories and find the envelope that
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Theory parameterized by 6.

Conduct experiment Inference - Finding exclusion contours, while minimizing the number of calls (expensive):

Issue: computation of p(x | 6) is in most cases intractable. {¥]p(pr(x[0), p(x|1), P,07)) < €}
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Approximating Likelihood Ratios with Adversarial Variational Optimization of Non-Differentiable Simulators
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Complex computer simulators are increasingly used across fields of science as generative models
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often difficult, as simulators rarely admit a tractable density or likelihood unction. We introduce
& ik ! : fren difficult ilat ly admit a tractable density or likelihood function. We introd 0.2

[\ oW ng_k UILI‘»—'EI‘SILY Adversarial Variational Optimization (AVO), a likelihood-free inference algorithm for fitting a non-

_ o A differentiable generative model incorporating ideas from empirical Baves and variational inference.
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Federico Santa Maria U niversity We adapt the training procedure of generative adversarial networks by replacing the differentiable o0

generative network with a domain-specific simulator. We solve the resulting non-differentiable mini-

[\I l 21 20 1 F max problem by minimizing variational upper bounds of the two adversarial objectives. Effectively,

arcil ? 3 the procedure results in learning a proposal distribution over simulator parameters, such that the

corresponding marginal distribution of the generated data matches the observations. We present
results of the method with simulators producing both discrete and continuous data.

I. INTRODUCTION II. PROBLEM STATEMENT
Absiract

In many fields of science, generalized likelihood ratio tests are established tools
for statistical inference. At the same time, it has become increasingly common that
a simulator (or generative model) is used to describe complex processes that tie pa-
rameters # of an underlying theory and measurement apparatus to high-dimensional
observations x € RF. However, simulator often do not provide a way to evaluate
the likelihood function for a given observation x, which motivates a new class of
likelihood-{ree inference algorithms. In this paper, we show that likelihood ratios are
invariant under a specific class of dimensionality reduction maps B* — K. As a di-
rect consequence, we show that diseriminative classifiers can be used to approximate
the generalized likelihood ratio statistic when only a generative model for the data
is available. This leads to a new machine learning-based approach to likelihood-free
inference that is complementary to Approximate Bayesian Computation, and which
does not require a prior on the model parameters. Experimental results on artifi-
cial problems with known exact likelihoods illustrate the potential of the proposed
method.

Keywords: likelihood ratio, likelihood-free inference, classification, particle physics, surro-
gate model
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In many fields of science such as particle physies. epi-
demiology, and population genetics, computer simulators
are used to describe complex data generation processes.
These simulators relate ohservations x to the parame-
ters @ of an underlying theory or mechanistic model.
In most cases, these simulators are specified as proce-
dural implementations of forward, stochastic processes
imvolving latent variables z. Rarely do these simulators
admit a tractable density (or likelihood) p(x|@). The
prevalence and significance of this problem has motivated
an active research effort in so-called likelihood-free infer-
ence algorithms such as Approximate Bayesian Compu-
tation (ABC) and density estimation-by-comparison al-
gorithms [1-6].

In parallel, with the introduction of variational auto-
encoders [7] and generative adversarial networks [§],
there has been a vibrant research program around im-
plicit generative models based on neural networks [9].
While some of these models also do not admit a tractable
density, they are all differentiable by construction. In ad-
dition, generative models based on neural networks are
highly parametrized and the model parameters have no
obvious interpretation. In contrast, scientific simulators
can be thought of as highly regularized generative mod-
els as they typically have relatively few parameters and
they are endowed with some level of interpretation. In

sertng, inference on the model parameters @ is often
of more interest than the latent variables =,

In this note, we develop a likelihood-free inference algo-
rithm for non-differentiable. implicit generative models.
We adapt the adversarial training procedure of gener-
ative adversarial networks [8] by replacing the implicit
generative network with a domain-based scientific simun-
lator, and solve the resulting non-differentiable minimax

We consider a family of parametrized densities p(x|#)
defined implicitly through the simulation of a stochas-
tic generative process, where x € R is the data and #
are the parameters of interest. The simulation may in-
volve some complicated latent process where z € Z is a
latent wariable providing an external source of random-
ness. Unlike implicit generative models defined by neural
networks, we do not assume z to be a fixed-size vector
with a simple density. Instead, the dimension of z and
the nature of its components (uniform, normal, discrete,
continuous, ete.) are inherited from the control flow of
the simulation code and may depend on # in some in-
tricate way. Moreover, the dimension of z may be much
larger than the dimension of x.

We assume that the stochastic generative process that
defines p(x|#) is specified throngh a non-differentiable
deterministic function g(-;8) : £ — R4, Operationally,

x~ p(x|8) = z ~ p(z|8).x = g(=.0) (1)

such that the density p(x|@) can be written as
pixle) = [ pelO)uidz). (@)
{=al=8)=x}

where p is a probability measure.

Given some observed data {x;|i = 1...., N} drawn
from the (unknown) true distribution p,.(x). our goal is to
estimate the parameters 8* that minimize the divergence
between p,(x) and the implicit model p(x|#). That is,

8" = argmin p(p, (x). p(x]8)). (3)

where p is some distance or divergence.

III. BACKGROUND

Adversarial Variational Optimization (Louppe, Cranmer, 2017):

Generative adversarial networks:

j O real data

T ~ Pdata(T)
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Implicit models: Likehood-free
inference relates to a large body of
statistical methods developed within
the machine learning community:

- Approximate Bayesian
Computations

- Density estimation-by-comparison

- Varitional inference

- Same as generative adversarial networks (see below).
Replace generator network with domain simulator.

- Cope with non-differentiability using variational optimization.  Deep learning for
- Require state-of-the-art classifiers for optimal performance.

physical sciences
strongly needed here!

Which of those are real faces?
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Particle physics (collaborations with CERN and Oxford)

- Exploration of Beyond the Standard Model theories

- Automated tuning of particle detectors

Cosmology (collaboration with

astrophysicists)
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Semiconductor tracker

Geomorphology (collaboration with

Earth scientists)
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V. Deep learning for physical sciences

This interdisciplinary research usually requires domain-specific deep learning
models, which results in contributions of their own.

Learning to Pivot with Adversarial Networks

Neural Message Passing for Jet Physics
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Abstract

Several techniques for domain adaptation have been proposed to account for
differences in the distribution of the data used for training and testing. The majority
of this work focuses on a binary domain label. Similar problems occur in a scientific
context where there may be a continuous family of plausible data generation
processes associated to the presence of systematic uncertainties. Robust inference
is possible if it is based on a pivot = a quantity whose distribution does not depend
on the unknown values of the nuisance parameters that parametrize this family
of data generation processes. In this work, we introduce and derive theoretical
results for a training procedure based on adversarial networks for enforcing the
pivotal property (or. equivalently, faimess with respect to continuous attributes) on
a predictive model. The method includes a hyperparameter to control the trade-
off between accuracy and robustness. We demonstrate the effectiveness of this
approach with a toy example and examples from particle physics.
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Abstract

Supervised learning has incredible potential for particle physics, and one appli-
cation that has received a great deal of attention involves collimated sprays of
particles called jets. Recent progress for jet physics has leveraged machine learning
techniques based on computer vision and natural language processing. In this work,
we consider message passing on a graph where the nodes are the particles in a
jet. We design variants of a message-passing neural network (MPNN); (1) with a
learnable adjacency matrix, (2) with a learnable symmeitric adjacency matrix, and
(3) with a set2set aggregated hidden state and MPNN with an identity adjacency
matrix. We compare these against the previously proposed recursive neural network
with a fixed tree structure and show that the MPNN with a learnable adjacency
matrix and two message-passing iterations outperforms all the others.

QCD-Aware Recursive Neural Networks for Jet Physics

Gilles Louppe,! Kyunghyun Cho,' Cyril Becot,! and Kyle Cranmer’
'New York University

Recent progress in applying machine learning for jet physics has been built wpon an analogy
between calorimeters and images. In this work, we present a novel class of recursive neural networks
built instead upon an analogy between QUD and natural languages. In the analogy, four-momenta
are like words and the clustering history of sequential recombination jet algorithms is like the
parsing of a sentence. Our approach works directly with the four-momenta of a variable-length set
of particles, and the jet-based tree structure varies on an event-by-event basis. Our experiments
highlight the Hexibility of our method for building task-specific jet embeddings and show that
recursive architectures are significantly more accurate and data efficient than previous image-based
networks. We extend the analogy from individual jets (sentences) to full events (paragraphs), and
show for the first time an event-level classifier operating on all the stable particles produced in an

LHC event.
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