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The key to Science  II. Optimal experimental design

How do we look for new scientific laws?

1. Make a guess
2. Compute the consequences of the guess
3. Compare the results to Nature

Long-term research goal: automate the 
Scientific method through modern 
Artificial Intelligence and Deep Learning methods!

1. Likelihood-free inference
To validate a guess and compare it to Nature, we need to compute its 
consequences. The expected consequences are usually modelled through a 
computer simulator.

A guess is a parameterized theory

Standard Model of Particle Physics

Theory parameterized by ߠ. 
One can only sample 

from p(x | ߠ) with forward 
simulations.

(ߠ | x)p ߠargmax = *ߠ

Conduct experiment Inference

Issue: computation of p(x | ߠ) is in most cases intractable. 

Solutions?

argmax߶  Δ(߶)

(ߠ | x)p ߠargmax = *ߠ arg max߶  Δ(߶)

(ߠ | x)p ߠargmax = *ߠ

Execute under ᶰ:

InferenceSimulate experiment

How do we design the best 
scientific experiment?

If an experiment is configured by 
߶, then we want to find the 
experiment that maximizes the 
reduction in entropy Δ(߶), 
therefore obtaining the least 
amount of uncertainty H[ߠ].

Solution: optimal experimental design!

Challenges:

- infrastructure: full reproducible workflow 
needs to be run multiple times in order to 
make the estimations for different values of ᶰ.

- optimization: estimating the reduction of 
uncertainty is slow. We need an efficient 
optimization algorithm (e.g., Bayesian 
optimization).

Adversarial Variational Optimization (Louppe, Cranmer, 2017):
- Same as generative adversarial networks (see below).
- Replace generator network with domain simulator.
- Cope with non-differentiability using variational optimization.
- Require state-of-the-art classifiers for optimal performance.

Generative adversarial networks:

Which of those are real faces?

 III. Exploring the theory space

Hypothesis(φ) Experiment(߶) Conclusions(ߠ)

 IV. Use cases (ongoing work)

Implicit models: Likehood-free 
inference relates to a large body of 
statistical methods developed within 
the machine learning community:

- Approximate Bayesian 
Computations

- Density estimation-by-comparison
- Varitional inference

Deep learning for 
physical sciences 

strongly needed here!

Can we automatically explore the space of theories and find the envelope that 
agrees with the data?

Solutions?

- Symbolic exploration
- Finding exclusion contours, while minimizing the number of calls (expensive):

Particle physics (collaborations with CERN and Oxford)

- Exploration of Beyond the Standard Model theories
- Automated tuning of particle detectors

Cosmology (collaboration with 
astrophysicists)

 V. Deep learning for physical sciences
This interdisciplinary research usually requires domain-specific deep learning 
models, which results in contributions of their own. 

Looking for new 
PhD students! 

(Computer Science, 
Engineering or 

Physical Sciences)
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